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EX TR EME B O U N D A R I E S  OF C O N V E X  
BODIES IN l? 

BY 

ALDO J. LAZAR 

ABSTRACT 

Every uncountable complete separable metric space is homeomorphic to the 
set of extreme points lin the weak topologyl of a bounded closed convex body 
in I... 

1. J. Lindenstrauss and R. R. Phelps proved in [7, Corollary 1.2] that the set 

of extreme points of a bounded closed convex body C in an infinite dimen- 

sional reflexive space E is uncountable. It has been previously known that if E 

is separable then ext C with the weak topology is separable and metrizable with 

a complete metric. It has been conjectured by the above authors that, 

conversely,  for any uncountable complete separable metric space X there is a 

bounded closed convex body in l,, whose set of extreme points in the weak 

topology is homeomorphic  to X. This conjecture was established by them with 

the additional assumption that X is compact  (see [7, Proposition 1.3], where a 

somewhat weaker result is proved). We are now able to prove their conjecture 

by relying on some ideas from the proof of Proposition 1.3 in [7] and on 

Haydon 's  proof [5] of a result of Choquet  [2, Theorem 29.9], which states that 

every complete separable metric space is homeomorphic  to the set of extreme 

points of some simplex. We wish to express our thanks to Professor  J. 

Lindenstrauss for  suggesting to us the problem and for communicating to us 

the proof he and R.R. Phelps had for the case of a compact  metric space. 

We use the notation of [1] with a few exceptions which are noted below. All 

the linear spaces considered are real. The set of extreme points of a convex set 

C is denoted ext C. If A is a subset of the topological space T, then clrA 
denotes the closure of A in T. For  a compact  Hausdorff  space T, P(T) 
represents the set of probability Radon measures on T with the w *- topology it 
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inherits f rom C(T)* = M ( T ) - - t h e  space of all Radon measures  on T. For  

t E T, ~5(t) is the Dirac measure  at t. If  X is a Banach space, we denote by 

B ( X )  its closed unit ball. 

o 

LEMMA 1. 

such that 

We begin with a technical result on compactifications.  

Let X be a separable metric space and {X~ }~, closed subsets of X 

0 Xi=X,X, AX3=X, DX,=X:NX4=O. 
i=l 

Then X can be topologically embedded as a dense subset of a compact metric 

space T such that 

for 1<-i<-3 and 

clr(X~ n X~+,) = clrX~ n clrX,+, 

clTX, n clTX3 = c l rX,  n clrX4 -- clrX2 n c i r X ,  = 0 .  

PROOF. Let  p be a homeomorph i sm of X into the Hilbert  cube and f be a 

continuous function f rom X to [0, l] such that f iX,  n X2 -- 0, fiX2 N X3 -- ' and 

fiX3 n X4 = 1. Then ~ ( X )  = ( f (X) ,  p (X))  defines a homeomorph i sm of X into 

the Hilbert  cube such that the closures in [0, l] N° of X, n X2, x 2 n  x3 and 

X3 n x4 are mutually disjoint. Thus we may suppose that X is embedded  into a 

compact  metric space Y such that 

cl~,(X, n X2) n cly(X2 n X~) -- clr  ( x ,  n X2) n ch,(X3 n 3(4) 

= cl~.(X2 n X3) n cly(X3 n X4) = ~ .  

Now,  let 

Y, -- X, U cly(X, n X2), 

Y2 -- X2 u cl,.(X, n x2) u c ly(X:  n x3), 

Y3 -- x3 u ch.(X:  n X3) u cl~.(x~ n X4), 

}'4 = X4 u cly(X3 N )(4) 

and let Zi, 1 <_- i _-_ 4, be a compact  metric space which contains Yi as a dense 

subset.  Le t  Z be the disjoint union of Z,,  Z2, Z3 and Z,. Ident i fy in Z the 

corresponding points of cl~.X~ n Xi+, (in Zi and Zi~0, l -  -< i _-< 3; one gets a 

compac t  metrizable space T. It is readily checked that T satisfies the 

requirements .  
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The next  lemma is an ad-hoc modification of the Choquet -Haydon theorem 

[2, p. 183] mentioned in the introduction. The proof differs f rom that of [5] only 

by some technical details. 

LEMMA 2. Let X be a complete separable metric space and {X~}~=~ closed 

subsets of X such that 

0 x ~ = x , x ~ n x ~ = x ,  n x ~ = x z n x 4 = ~ .  
i = l  

Then there exists a metrizable simplex K, a homeomorphism tb of X onto ext K 
I ~  4 ~ , and closed faces { ~}~_, of K such that ,b (K~)= ext F~, 1 < i - < 4  

PROOF. Let  T be as in Lemma 1. By [6, p. 430] there is a decreasing 

sequence {G, }~=o of open subsets of T such that Go = T and O ~.o G, = X. Let  

{e,}7~ be a sequence from (0, 1) which converges to zero. Each G. is the union 

of a sequence {H,~}7=, of compact  sets. For  each x ~ H,' choose a neighbour- 

hood of diameter < 2- 'e .  whose closure is contained in G~ and which is 

included in T \  U i,,~ clrX¢ if x ~ T \ U  ~,~clrXi or is included in 

T \  U ~,~.i,,~+mclrX/ if x E clrX~ n clrX~+,. By passing to finite subcovers  of 

each H ;  we get a null-sequence {r/~}~o C(0, 1) and open sets {G~}~-o such that 

G, = U ®~ =o G ~, ~ diam (G ~) < 2-~r/~, c l rG ~, C G, and each of the sets G ~ either 

ntersects only one of the sets clrX~ or, if it meets two of them, say clrX~ 

and clrX~.,  then 

G~ N clTX~ N clTX,., ~ 0 .  

No G~ meets more than two of the sets clrX~. For each n and k let g~ E C(T) 
satisfy: 0 -< g~ =< 2 -k, g~ vanishes identically on T\G~ and is strictly positive on 

G~. Define h7, E C ( T )  as follows: hT,(x) = 0 if x E T\G., 

,) h'~(x)=g'~(x g'~(x i fx  E G . .  

Then E~=o h ~ = ~(~., diam (supp h ~ ) N 2-~rl ~, and h ~ is not identically zero on at 

most two of the sets clrX~. If h l  is not trivial on clrX~ and clrX~÷, then it is not 

trivial on clrXj n clrX~+,. Define p~ = h ~Xr~c..,. If p T, ~ 0 on clrX~ N clrX~.~, 

choose points x ~,, y ~ E X~ n x~÷, n supp h ~, x ~ ~ y ~ and if p ~ ~ 0 on clr X~ only, 

then choose x~, y~ ~ X~ n supp hl. If p~ is identically zero, let x~, y~ be any 

two points of X. For  tz E M(T) denote 

1°[ 
~ , ( ~ ) = l . ~ - ~ . ~  ° p~d~ ( 8 ( x ~ ) + 8 ( y ~ ) )  
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and let E = {y(/z):/z E M(T) ,  I/zl(X) = 0}. Then E is a w*-closed subspace of 

M ( T )  by [5]. Let  to be the restriction to P(T)  of the quotient map from M ( T )  

onto M ( T ) / E  and K = to(P(T)). Then one sees as in [5] that K is a simplex and 

tb = to o ~5 is a homeomorphism of X onto ext K. We have to show that the 

closed convex hull of ~b(X,) is a face of K. To this end it suffices to show that 

for each point in cl~, 4~ (X~), the support of the unique maximal measure which 

represents it is contained in ch, 4~ (X~)(cf. [3, Theorem 3.3]). Clearly clK ~b (X~) = 

~b(clrX~), so let t E'clrX~\X~ and suppose t ~ G,\G,+,. Then 

~ n y( t  ) = 6(t ) - -4 ~ pk(t  )(a(x~) + 6 (y ~,)), 

thus 

(1) 
ok(t) = ; ~ Pk(t)  (ch(x~) + ~b(y~)). 

~ - ~ = 0  

Since x~, y~ E X~ if p I ( t ) ~  0, (1) gives the maximal measure representing 

4~(t) and it is plain that its support is contained in clx ~b(X,). This concludes the 

proof of the lemma. 

For the remainder of the paper we shall use the following notation: I = [0, 1], 

I, = [0, 2-2], I ,  = [2 -2, 2- ' ] , /3  = [2-', 3 .2  -2] and L = [3.2 -2, 1]. 

LEMMA 3. Let X be an uncountable complete separable metric space. Then 

there exist a metrizable simplex K whose set of extreme points is homeomorphic 

to X and a continuous affine map g of  K onto P(I)  such that g ( e x t K )  

c U ~-,P(O. 

PROOF. By [6, p. 444] X contains a subset C homeomorphic to the Cantor 

set. Let  C,, C2 be two disjoint subsets of C homeomorphic to C. By normality 

there are disjoint open subsets G,, G2 of X which contain C,, C2 respectively. 

Denote H~ = X \ G ,  Let Y~ be an uncountable open subset of G~ such that 

clx Y~ C G~ and Gi\cl× Y~ is uncountable. Now let X~ = clx Y~, X~ = H2\Y,, 

X 3 = H ~ \ Y 2  and X4=clxY2.  Clearly X =  U~.~X,, X,  A X 3 = X ,  A X 4 =  

X2 tq X4 = 0 ,  {X~}~, are closed subsets of X and X \  U j,,~X~ is uncountable, 

1 =< i =< 4. Consider now the simplex K given for X and {X~}~'., by Lemma 2. We 

shall identify X with ext K. Denote by F~ the closed convex hull of X~. Let  A be 

a subset of X \  U ~.2x~ homeomorphic to the Cantor set (see [6, p. 408, p. 

444]) and g, a continuous function from A onto I,. By [1, p. 108] and [4, p. 32, p. 

78], g, admits a continuous affine extension, which will be denoted by g~ too, 

f rom F~ onto P(IO such that g,(F~ N Fz)=  {6(2-2)}. In a similar manner one 
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cons t ruc t s  con t inuous  affine func t ions  gk f r o m  Fk on to  P(IE), 2 <--k <--4, such 

that  g2(F, N F2) = {8(2-2)}, g2(F2 A F3) = g3(F2 N F3) = {8(2-')} and  g3(F3 A F,)  = 

g4(F3 N F~) = {6 (3- 2-2)}. The  s implexes  P(Ik) can  be  cons ide red  as c losed  f aces  

of  P(I).  One  m o r e  use  of  [4, p. 32] yields  the  des i red  func t ion  g. 

3. We  m a y  p r o v e  now our  main  result .  

THEOREM. Every uncountable complete separable metric space is 

homeomorphic to the set of extreme points (with the weak topology) of a 

bounded closed convex body in 12. 

PROOF. Le t  H ,  = H2 = 12 and H = H , E ) H 2 .  By the H a h n - M a z u r k i e w i c z  

t heo rem,  there  is a (weakly)  con t inuous  map  6 '  of  I into H such that  

6'(I,) = B(H,)  x {0}, 6 ' ( I2  U 13) = {(0, 0)} and 6 ' ( L )  = {0} x B(H2).  Deno t e  its 

unique con t inuous  affine ex tens ion  f r o m  P(I)  to H by  6 ' ,  too.  Cons ide r  now 

the s implex  K and the map  g = K ~ P(I)  given by  L e m m a  3 with X = ext  K. 

The  compos i t i on  6 = 6 ' o g  m a p s  the c losed  f ace s  F j = g - ' ( P ( I j ) )  as 

fo l lows:  6 ( F , )  = B(H,)  x {0}, 6(F2 U F3) = {(0, 0)}, 6 ( F , )  = {0} x B(H2) .  Define 

the fo l lowing func t ions  on I :  

~ ( t )  = 4t - 1, 

O__<t __<2 -2 ' 

T2__<t_<2 - '  ' 

2 - ' < t < _ l ,  

O<-t <-2-', 

2-'__<t__<3.2 -2, 

3.2-2__<t__<1. l! /3(t) = - 4 t ,  

We shall use a and /3 to deno te  also their  unique ex tens ions  as con t inuous  

affine func t ions  on P(1). 

Put K ,  = c o n v  (F,  U F2), K2 = c o n v  (F3 U F4). Choose  two sequences  {fJ,}~.,, 

{ff,}~=, in the c losed unit ball of  A ( K )  such that  f~ , [F ,=0 ,  f t . ] F , = 0  fo r  

n = 1 , 2 , . . . ,  and {/~,]K2}~-,, {f,[K,}~=, are dense  in the c losed  unit  ball of  

A(K2) ,  A(KO,  respec t ive ly .  Define now ~b: K ~ H as fo l lows:  

~b(x) = { (2a (g (x ) ) ,  8-~/'~(x), . . .  , 8-" /~ , (x) , . . . ) ,  

(2/3 (g (x)),  8 - ' f ~ ( x ) , . - . ,  8 -" /2 , (x) , - . . )} ,  
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and let h : K --) H be given by h (x) = tk (x) + 6(x) .  We claim that C = h (x) is a 

bounded closed convex  body in H and that ext C is homeomorph ic  to 

X = ext K. 

First we are going to show that the restriction of h to K ~ U K 2  is a 

homeomorph i sm.  Since h is clearly continuous,  we have only to show that h is 

one-to-one on K~ O K2. If x, y ~ K, ,  the (n + l)th H2-coordinates  of h(x) and 

h(y)  are 8-nf2n(X) and 8- ' f~(y),  repect ively;  thus h(x)= h(y)  if and only if 

x = y. Similarly one sees that h IK2 is one-to-one.  If  x ~ K, and y ~ K2, then the 

first H2-coordinate  of h(x) is 2, while the same coordinate of h (y)  is 2 only if 

g (y )  = 8(2- ' ) ,  and in this case y E F2N F3CK,. 
We shall now show that h (X)  = ext C. Obviously ext C C h (X). Let  x E X 

and suppose x ~ Kj. Assume 

(*) h(x) = Ah(y) + (1 - A)h(z)  

with 0_-<A <_- 1, y, z E K. Since K = c o n v  (K, U K2), by applying the same 

argument  as at the end of the last paragraph,  we get y, z E Ki. Now (*) yields 

[~(x)=Af~(y)+(l-A)f~(z),  n = l , 2 , . . .  By the choice of {f~7=l, x =  

Ay + ( l - A ) z .  Thus x = y  = z and h(x)  E e x t  C. A similar argument  works in 

the case x E K2, hence h (X) C ext C. 

It remains to show that int C #  0 .  One shows that {(l, 0, 0,.  • .), ( l ,  0, 0,.  • -)} E 

int C as in [7, Proposit ion 1.3]. 
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