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EXTREME BOUNDARIES OF CONVEX
BODIES IN [,

BY
ALDO J. LAZAR

ABSTRACT

Every uncountable complete separable metric space is homeomorphic to the
set of extreme points (in the weak topology) of a bounded closed convex body
in [,.

1. J. Lindenstrauss and R. R. Phelps proved in [7, Corollary 1.2] that the set
of extreme points of a bounded closed convex body C in an infinite dimen-
sional reflexive space E is uncountable. It has been previously known that if E
is separable then ext C with the weak topology is separable and metrizable with
a complete metric. It has been conjectured by the above authors that,
conversely, for any uncountable complete separable metric space X there is a
bounded closed convex body in [, whose set of extreme points in the weak
topology is homeomorphic to X. This conjecture was established by them with
the additional assumption that X is compact (see [7, Proposition 1.3], where a
somewhat weaker result is proved). We are now able to prove their conjecture
by relying on some ideas from the proof of Proposition 1.3 in [7] and on
Haydon’s proof {5] of a result of Choquet [2, Theorem 29.9], which states that
every complete separable metric space is homeomorphic to the set of extreme
points of some simplex. We wish to express our thanks to Professor J.
Lindenstrauss for suggesting to us the problem and for communicating to us
the proof he and R.R. Phelps had for the case of a compact metric space.

We use the notation of [1] with a few exceptions which are noted below. All
the linear spaces considered are real. The set of extreme points of a convex set
C is denoted ext C. If A is a subset of the topological space T, then clr A
denotes the closure of A in T. For a compact Hausdorff space T, P(T)
represents the set of probability Radon measures on T with the w*-topology it
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inherits from C(T)* = M(T)—the space of all Radon measures on T. For
t €T, 6(¢t) is the Dirac measure at t. If X is a Banach space, we denote by
B(X) its closed unit ball.

2. We begin with a technical result on compactifications.

LeMMA 1. Let X be a separable metric space and {X.}i-, closed subsets of X
such that

4
UX=XXNX=XNX,=X;NnX,=.
i=1

Then X can be topologically embedded as a dense subset of a compact metric
space T such that

cr(Xi N X)) =clr Xi Nelr X
for 1=i=3 and
ClTX| N CITX3 = CITX1 M ClTX4 = CITX2 N C]TX4 = @

Proor. Let p be a homeomorphism of X into the Hilbert cube and f be a
continuous function from X to [0, 1] such that f|X, N X, =0, f| XN X;=1}and
fIX;0 X.= 1. Then ¥(X) = (f(X), p(X)) defines a homeomorphism of X into
the Hilbert cube such that the closures in [0, 1]* of X, N X;, X;N X, and
X30N X, are mutually disjoint. Thus we may suppose that X is embedded into a
compact metric space Y such that

Cly(X. N Xz) N Cly(Xz N X3) = Cly(X| N Xz) M Cly(X3 N X4)
= Cly(Xz n X3) N Cly(X3 M X4) = @.
Now, let

Y, =X, Ucly(Xi N X3),

2= X2 Ucly(X, N X)) Ucly (XN X5),
Y;=X;Ucly(X2N X5) Ucly(X5N X)),
Yi= X Ucly(X5N X4)

and let Z, 1 =i =4, be a compact metric space which contains Y; as a dense
subset. Let Z be the disjoint union of Z,, Z,, Z, and Z,. Identify in Z the
corresponding points of cly X; N X, (in Z and Z.,), 1 =i =3; one gets a
compact metrizable space T. It is readily checked that T satisfies the
requirements.
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The next lemma is an ad-hoc modification of the Choquet-Haydon theorem
{2, p. 183] mentioned in the introduction. The proof differs from that of [5] only
by some technical details.

LemMma 2. Let X be a complete separable metric space and {X.}{-, closed
subsets of X such that

4
U X,»=X,X,ﬂX3=X|ﬁX4=XzﬁX4=®.
i=1

Then there exists a metrizable simplex K, a homeomorphism ¢ of X onto ext K
and closed faces {F.}!., of K such that & (K,))=ext F, 1=i=4.

Proor. Let T be as in Lemma 1. By [6, p. 430] there is a decreasing
sequence {G, }n-o of open subsets of T such that Go= T and N 7.0G. = X. Let
{e,};-1 be a sequence from (0, 1) which converges to zero. Each G, is the union
of a sequence {H}/-, of compact sets. For each x € H; choose a neighbour-
hood of diameter <2 "¢, whose closure is contained in G, and which is
included in T\ U ,clX, if x€T\U uicleX; or is included in
TN U iijminicleX; if x €clpX, N cl;X;.,. By passing to finite subcovers of
each H! we get a null-sequence {n}}7., C(0,1) and open sets {G} }i ., such that
G, = Us_,Gr, diam (G}) <2y}, cl;G CG, and each of the sets G} either
ntersects only one of the sets cl-X; or, if it meets two of them, say cl-X;
and cl;X,,, then

G: nClTX.' N C!TX1+| # @

No G} meets more than two of the sets cl-X.. For each n and k let gk € C(T)
satisfy: 0= gt =27% g& vanishes identically on T\G% and is strictly positive on
Gn. Define h € C(T) as follows: hi(x) =0 if x € T\G.,

hi‘(x)=g2(x)<§()g2(x)) it x €G..

Then 2i-ch} = xc., diam (supp hi) =27"n%, and h; is not identically zero on at
most two of the sets clz X.. If A% is not trivial on clr X; and clr Xi.,, then it is not
trivial on clr X; Nclr Xi.y. Define pt = ki xrG,... If pi#0 on clx X Nclr Xiwy,
choose points x7, yr € X; N Xi., N supp hi, xi # yi and if pi # 0 on cl- X; only,
then choose x%, yi € X; N supp hi. If pi is identically zero, let x5, y: be any
two points of X. For u € M(T) denote

yw = -3 3 [ pide GaD+0D)
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and let E = {y(n): o € M(T), |¢|(X)=0}. Then E is a w*-closed subspace of
M(T) by [5]. Let @ be the restriction to P(T) of the quotient map from M(T)
onto M(T)/E and K = «(P(T)). Then one sees as in [5] that K is a simplex and
¢ = w48 is a homeomorphism of X onto ext K. We have to show that the
closed convex hull of ¢(X;) is a face of K. To this end it suffices to show that
for each point in clc ¢ (X;), the support of the unique maximal measure which
represents it is contained in clx ¢ (X )(cf. [3, Theorem 3.3]). Clearly clx ¢ (X;) =
& (clr Xi), so let t €cle X \X; and suppose t € G,\G,+:. Then

N —

y(t)=26(t)— g’p:(t)(ﬁ(x'iH&(yE)),

thus

W B(1)=3 3, PLO) (0D + (D).

Since xi, yi € X if pi(t)#0, (1) gives the maximal measure representing
¢ (t) and it is plain that its support is contained in clx ¢ (X;). This concludes the
proof of the lemma.

For the remainder of the paper we shall use the following notation: I = [0, 1],
IL,=[0,2%, L=02%2",L=12"32%and I,=[3-27% 1].

LEmMA 3. Let X be an uncountable complete separable metric space. Then
there exist a metrizable simplex K whose set of extreme points is homeomorphic

to X and a continuous affine map g of K onto P(I) such that g(extK)
c Ui, Pd).

Proor. By [6, p. 444] X contains a subset C homeomorphic to the Cantor
set. Let C,, C, be two disjoint subsets of C homeomorphic to C. By normality
there are disjoint open subsets G,, G, of X which contain C,, C; respectively.
Denote H; = X\G.. Let Y; be an uncountable open subset of G; such that
clxY; CG: and Gi\clxY: is uncountable. Now let X, =clyY,, X;=H,\Y,,
X,=H\Y, and X,=cl,Y, Clearly X= U{ X, X,nX,=X,NnX,=
X,NX,=3, {X}i., are closed subsets of X and X\ U ;«X; is uncountable,
1 =i =4. Consider now the simplex K given for X and {X}!., by Lemma 2. We
shall identify X with ext K. Denote by F, the closed convex hull of X;. Let A be
a subset of X\\ U {..X; homeomorphic to the Cantor set (see {6, p. 408, p.
444)) and g, a continuous function from A onto I,. By [1, p. 108] and [4, p. 32, p.
78], g, admits a continuous affine extension, which will be denoted by g, too,
from F, onto P(I,) such that g(F,N F;) ={8(27%}. In a similar manner one
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constructs continuous affine functions g, from F, onto P(l,), 2=k =4, such
that g,(F, N F,) = {8279}, g(F. N F,) = g(F,N F;) ={8(27")} and g(F, N F,) =
g{(F,NFJ)={8(3-2%}. The simplexes P(I;) can be considered as closed faces
of P(I). One more use of (4, p. 32] yields the desired function g.

3. We may prove now our main result.

THeorReM. Every uncountable complete separable metric space s
homeomorphic to the set of extreme points (with the weak topology) of a
bounded closed convex body in [,.

Proor. Let Hi=H,=1, and H = H,P H,. By the Hahn-Mazurkiewicz
theorem, there is a (weakly) continuous map ¢’ of I into H such that
¢'(I)=B(H,) x{0}, ¢'(I,U I;) = {0, 0)} and ¢'(I,) = {0} x B(H,). Denote its
unique continuous affine extension from P(I) to H by ¢’, too. Consider now
the simplex K and the map g = K - P(I) given by Lemma 3 with X = ext K.
The composition ¢ =4’'cg maps the closed faces F, =g '(P(I})) as
follows: ¢(F,) = B(H\) X {0}, ¢(F>U F;) ={(0, 0)}, ¢(F.) = {0} x B(H>). Define
the following functions on I:

0 . 0=t=27?,
at)y=)4t-1, 2=t =27,
1 2=t =1
1 0=¢r=2",
B(t)={3—-4t, 27'=1=3-27,
0 3-27%=t =t

We shall use « and B to denote also their unique extensions as continuous
affine functions on P(I).

Put K, = conv (F, U F,), K> = conv (F;U F,). Choose two sequences {f i},
{fa}-1 in the closed unit ball of A(K) such that fiF,=0, f]F.=0 for
n=12---, and {fi|K:}n-i, {fiK.}7i-, are dense in the closed unit ball of
A(K3), A(K)), respectively. Define now ¢: K - H as follows:

& (x)={Q2a(g(x)), 8'fi(x), -+, 87fux)," - ),
(2B(g(x)), 87'fix), -+, 87"fXx),- - )},
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andlet h: K - H be givenby h(x) = ¢(x)+ ¢(x). We claimthat C = h(x)isa
bounded closed convex body in H and that ext C is homeomorphic to
X =ext K.

First we are going to show that the restriction of h to KUK, is a
homeomorphism. Since h is clearly continuous, we have only to show that h is
one-to-one on K, U K,. If x, y € K,, the (n + 1)th H,-coordinates of h(x) and
h(y) are 8 "fix) and 8 "fiy), repectively; thus h(x) = h(y) if and only if
x = y. Similarly one sees that h|K, is one-to-one. If x € K, and y € K, then the
first H.- coordinate of h(x) is 2, while the same coordinate of h(y) is 2 only if
g(y)=8(2™"), and in this case y E F,NF,CK,.

We shall now show that h(X) = ext C. Obviously ext CCh(X). Let x € X
and suppose x € K,. Assume

*) h(x)=Ah(y)+(1—=A)h(z)

with 0=A =1, y, z € K. Since K = conv (K, U K3), by applying the same
argument as at the end of the last paragraph, we get y, z € K,. Now (¥) yields
fAx) = AfAy)+ (A= A)f¥z), n=1,2,---. By the choice of {fZr., x=
Ay +(1—A)z. Thus x =y =z and h(x) Eext C. A similar argument works in
the case x € K3, hence h(X) Cext C.

It remains to show that int C# . One shows that {(1,0,0,--),(1,0,0,---)} €
int C as in [7, Proposition 1.3].
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